\(\int \frac {(c+d x^n)^4}{(a+b x^n)^2} \, dx\) [305]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 341 \[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=-\frac {d \left (b^3 c^3 \left (1+3 n+2 n^2\right )-a^3 d^3 \left (1+6 n+11 n^2+6 n^3\right )-a b^2 c^2 d \left (3+12 n+17 n^2+12 n^3\right )+a^2 b c d^2 \left (3+15 n+26 n^2+16 n^3\right )\right ) x}{a b^4 n (1+n) (1+2 n)}-\frac {d \left (b^2 c^2 \left (1+3 n+2 n^2\right )-2 a b c d \left (1+4 n+5 n^2\right )+a^2 d^2 \left (1+5 n+6 n^2\right )\right ) x \left (c+d x^n\right )}{a b^3 n (1+n) (1+2 n)}+\frac {d (a d (1+3 n)-b (c+2 c n)) x \left (c+d x^n\right )^2}{a b^2 n (1+2 n)}+\frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}-\frac {(b c-a d)^3 (b c (1-n)-a d (1+3 n)) x \operatorname {Hypergeometric2F1}\left (1,\frac {1}{n},1+\frac {1}{n},-\frac {b x^n}{a}\right )}{a^2 b^4 n} \]

[Out]

-d*(b^3*c^3*(2*n^2+3*n+1)-a^3*d^3*(6*n^3+11*n^2+6*n+1)-a*b^2*c^2*d*(12*n^3+17*n^2+12*n+3)+a^2*b*c*d^2*(16*n^3+
26*n^2+15*n+3))*x/a/b^4/n/(2*n^2+3*n+1)-d*(b^2*c^2*(2*n^2+3*n+1)-2*a*b*c*d*(5*n^2+4*n+1)+a^2*d^2*(6*n^2+5*n+1)
)*x*(c+d*x^n)/a/b^3/n/(2*n^2+3*n+1)-d*(-3*a*d*n+2*b*c*n-a*d+b*c)*x*(c+d*x^n)^2/a/b^2/n/(1+2*n)+(-a*d+b*c)*x*(c
+d*x^n)^3/a/b/n/(a+b*x^n)-(-a*d+b*c)^3*(b*c*(1-n)-a*d*(1+3*n))*x*hypergeom([1, 1/n],[1+1/n],-b*x^n/a)/a^2/b^4/
n

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {424, 542, 396, 251} \[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=-\frac {x (b c-a d)^3 (b c (1-n)-a d (3 n+1)) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{n},1+\frac {1}{n},-\frac {b x^n}{a}\right )}{a^2 b^4 n}-\frac {d x \left (c+d x^n\right ) \left (a^2 d^2 \left (6 n^2+5 n+1\right )-2 a b c d \left (5 n^2+4 n+1\right )+b^2 c^2 \left (2 n^2+3 n+1\right )\right )}{a b^3 n (n+1) (2 n+1)}-\frac {d x \left (-a^3 d^3 \left (6 n^3+11 n^2+6 n+1\right )+a^2 b c d^2 \left (16 n^3+26 n^2+15 n+3\right )-a b^2 c^2 d \left (12 n^3+17 n^2+12 n+3\right )+b^3 c^3 \left (2 n^2+3 n+1\right )\right )}{a b^4 n (n+1) (2 n+1)}+\frac {d x \left (c+d x^n\right )^2 (a d (3 n+1)-b (2 c n+c))}{a b^2 n (2 n+1)}+\frac {x (b c-a d) \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )} \]

[In]

Int[(c + d*x^n)^4/(a + b*x^n)^2,x]

[Out]

-((d*(b^3*c^3*(1 + 3*n + 2*n^2) - a^3*d^3*(1 + 6*n + 11*n^2 + 6*n^3) - a*b^2*c^2*d*(3 + 12*n + 17*n^2 + 12*n^3
) + a^2*b*c*d^2*(3 + 15*n + 26*n^2 + 16*n^3))*x)/(a*b^4*n*(1 + n)*(1 + 2*n))) - (d*(b^2*c^2*(1 + 3*n + 2*n^2)
- 2*a*b*c*d*(1 + 4*n + 5*n^2) + a^2*d^2*(1 + 5*n + 6*n^2))*x*(c + d*x^n))/(a*b^3*n*(1 + n)*(1 + 2*n)) + (d*(a*
d*(1 + 3*n) - b*(c + 2*c*n))*x*(c + d*x^n)^2)/(a*b^2*n*(1 + 2*n)) + ((b*c - a*d)*x*(c + d*x^n)^3)/(a*b*n*(a +
b*x^n)) - ((b*c - a*d)^3*(b*c*(1 - n) - a*d*(1 + 3*n))*x*Hypergeometric2F1[1, n^(-1), 1 + n^(-1), -((b*x^n)/a)
])/(a^2*b^4*n)

Rule 251

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, (-b)*(x^n/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 424

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}+\frac {\int \frac {\left (c+d x^n\right )^2 \left (c (a d-b c (1-n))+d (a d (1+3 n)-b (c+2 c n)) x^n\right )}{a+b x^n} \, dx}{a b n} \\ & = \frac {d (a d (1+3 n)-b (c+2 c n)) x \left (c+d x^n\right )^2}{a b^2 n (1+2 n)}+\frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}+\frac {\int \frac {\left (c+d x^n\right ) \left (c \left (2 a b c d (1+2 n)-a^2 d^2 (1+3 n)-b^2 c^2 \left (1+n-2 n^2\right )\right )-d \left (b^2 c^2 \left (1+3 n+2 n^2\right )-2 a b c d \left (1+4 n+5 n^2\right )+a^2 d^2 \left (1+5 n+6 n^2\right )\right ) x^n\right )}{a+b x^n} \, dx}{a b^2 n (1+2 n)} \\ & = -\frac {d \left (b^2 c^2 \left (1+3 n+2 n^2\right )-2 a b c d \left (1+4 n+5 n^2\right )+a^2 d^2 \left (1+5 n+6 n^2\right )\right ) x \left (c+d x^n\right )}{a b^3 n (1+n) (1+2 n)}+\frac {d (a d (1+3 n)-b (c+2 c n)) x \left (c+d x^n\right )^2}{a b^2 n (1+2 n)}+\frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}+\frac {\int \frac {c \left (3 a b^2 c^2 d \left (1+3 n+2 n^2\right )+a^3 d^3 \left (1+5 n+6 n^2\right )-a^2 b c d^2 \left (3+12 n+13 n^2\right )-b^3 c^3 \left (1+2 n-n^2-2 n^3\right )\right )-d \left (b^3 c^3 \left (1+3 n+2 n^2\right )-a^3 d^3 \left (1+6 n+11 n^2+6 n^3\right )-a b^2 c^2 d \left (3+12 n+17 n^2+12 n^3\right )+a^2 b c d^2 \left (3+15 n+26 n^2+16 n^3\right )\right ) x^n}{a+b x^n} \, dx}{a b^3 n (1+n) (1+2 n)} \\ & = -\frac {d \left (b^3 c^3 \left (1+3 n+2 n^2\right )-a^3 d^3 \left (1+6 n+11 n^2+6 n^3\right )-a b^2 c^2 d \left (3+12 n+17 n^2+12 n^3\right )+a^2 b c d^2 \left (3+15 n+26 n^2+16 n^3\right )\right ) x}{a b^4 n (1+n) (1+2 n)}-\frac {d \left (b^2 c^2 \left (1+3 n+2 n^2\right )-2 a b c d \left (1+4 n+5 n^2\right )+a^2 d^2 \left (1+5 n+6 n^2\right )\right ) x \left (c+d x^n\right )}{a b^3 n (1+n) (1+2 n)}+\frac {d (a d (1+3 n)-b (c+2 c n)) x \left (c+d x^n\right )^2}{a b^2 n (1+2 n)}+\frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}-\frac {\left ((b c-a d)^3 (b c (1-n)-a d (1+3 n))\right ) \int \frac {1}{a+b x^n} \, dx}{a b^4 n} \\ & = -\frac {d \left (b^3 c^3 \left (1+3 n+2 n^2\right )-a^3 d^3 \left (1+6 n+11 n^2+6 n^3\right )-a b^2 c^2 d \left (3+12 n+17 n^2+12 n^3\right )+a^2 b c d^2 \left (3+15 n+26 n^2+16 n^3\right )\right ) x}{a b^4 n (1+n) (1+2 n)}-\frac {d \left (b^2 c^2 \left (1+3 n+2 n^2\right )-2 a b c d \left (1+4 n+5 n^2\right )+a^2 d^2 \left (1+5 n+6 n^2\right )\right ) x \left (c+d x^n\right )}{a b^3 n (1+n) (1+2 n)}+\frac {d (a d (1+3 n)-b (c+2 c n)) x \left (c+d x^n\right )^2}{a b^2 n (1+2 n)}+\frac {(b c-a d) x \left (c+d x^n\right )^3}{a b n \left (a+b x^n\right )}-\frac {(b c-a d)^3 (b c (1-n)-a d (1+3 n)) x \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {b x^n}{a}\right )}{a^2 b^4 n} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.39 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.64 \[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\frac {x \left (\frac {4 a b^3 c^3 d-6 a^2 b^2 c^2 d^2+4 a^3 b c d^3-a^4 d^4+b^4 c^4 (-1+n)}{a^2 n}+\frac {(-b c+a d)^3 (b c (-1+n)+a d (1+3 n))}{a^2 n}+\frac {2 b d^3 (2 b c-a d) x^n}{1+n}+\frac {b^2 d^4 x^{2 n}}{1+2 n}+\frac {(b c-a d)^4}{a n \left (a+b x^n\right )}+\frac {(b c-a d)^3 (b c (-1+n)+a d (1+3 n)) \operatorname {Hypergeometric2F1}\left (1,\frac {1}{n},1+\frac {1}{n},-\frac {b x^n}{a}\right )}{a^2 n}\right )}{b^4} \]

[In]

Integrate[(c + d*x^n)^4/(a + b*x^n)^2,x]

[Out]

(x*((4*a*b^3*c^3*d - 6*a^2*b^2*c^2*d^2 + 4*a^3*b*c*d^3 - a^4*d^4 + b^4*c^4*(-1 + n))/(a^2*n) + ((-(b*c) + a*d)
^3*(b*c*(-1 + n) + a*d*(1 + 3*n)))/(a^2*n) + (2*b*d^3*(2*b*c - a*d)*x^n)/(1 + n) + (b^2*d^4*x^(2*n))/(1 + 2*n)
 + (b*c - a*d)^4/(a*n*(a + b*x^n)) + ((b*c - a*d)^3*(b*c*(-1 + n) + a*d*(1 + 3*n))*Hypergeometric2F1[1, n^(-1)
, 1 + n^(-1), -((b*x^n)/a)])/(a^2*n)))/b^4

Maple [F]

\[\int \frac {\left (c +d \,x^{n}\right )^{4}}{\left (a +b \,x^{n}\right )^{2}}d x\]

[In]

int((c+d*x^n)^4/(a+b*x^n)^2,x)

[Out]

int((c+d*x^n)^4/(a+b*x^n)^2,x)

Fricas [F]

\[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\int { \frac {{\left (d x^{n} + c\right )}^{4}}{{\left (b x^{n} + a\right )}^{2}} \,d x } \]

[In]

integrate((c+d*x^n)^4/(a+b*x^n)^2,x, algorithm="fricas")

[Out]

integral((d^4*x^(4*n) + 4*c*d^3*x^(3*n) + 6*c^2*d^2*x^(2*n) + 4*c^3*d*x^n + c^4)/(b^2*x^(2*n) + 2*a*b*x^n + a^
2), x)

Sympy [F]

\[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\int \frac {\left (c + d x^{n}\right )^{4}}{\left (a + b x^{n}\right )^{2}}\, dx \]

[In]

integrate((c+d*x**n)**4/(a+b*x**n)**2,x)

[Out]

Integral((c + d*x**n)**4/(a + b*x**n)**2, x)

Maxima [F]

\[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\int { \frac {{\left (d x^{n} + c\right )}^{4}}{{\left (b x^{n} + a\right )}^{2}} \,d x } \]

[In]

integrate((c+d*x^n)^4/(a+b*x^n)^2,x, algorithm="maxima")

[Out]

-(a^4*d^4*(3*n + 1) - 4*a^3*b*c*d^3*(2*n + 1) + 6*a^2*b^2*c^2*d^2*(n + 1) - b^4*c^4*(n - 1) - 4*a*b^3*c^3*d)*i
ntegrate(1/(a*b^5*n*x^n + a^2*b^4*n), x) + ((n^2 + n)*a*b^3*d^4*x*x^(3*n) + (4*(2*n^2 + n)*a*b^3*c*d^3 - (3*n^
2 + n)*a^2*b^2*d^4)*x*x^(2*n) + (6*(2*n^3 + 3*n^2 + n)*a*b^3*c^2*d^2 - 4*(4*n^3 + 4*n^2 + n)*a^2*b^2*c*d^3 + (
6*n^3 + 5*n^2 + n)*a^3*b*d^4)*x*x^n + ((2*n^2 + 3*n + 1)*b^4*c^4 - 4*(2*n^2 + 3*n + 1)*a*b^3*c^3*d + 6*(2*n^3
+ 5*n^2 + 4*n + 1)*a^2*b^2*c^2*d^2 - 4*(4*n^3 + 8*n^2 + 5*n + 1)*a^3*b*c*d^3 + (6*n^3 + 11*n^2 + 6*n + 1)*a^4*
d^4)*x)/((2*n^3 + 3*n^2 + n)*a*b^5*x^n + (2*n^3 + 3*n^2 + n)*a^2*b^4)

Giac [F]

\[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\int { \frac {{\left (d x^{n} + c\right )}^{4}}{{\left (b x^{n} + a\right )}^{2}} \,d x } \]

[In]

integrate((c+d*x^n)^4/(a+b*x^n)^2,x, algorithm="giac")

[Out]

integrate((d*x^n + c)^4/(b*x^n + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^n\right )^4}{\left (a+b x^n\right )^2} \, dx=\int \frac {{\left (c+d\,x^n\right )}^4}{{\left (a+b\,x^n\right )}^2} \,d x \]

[In]

int((c + d*x^n)^4/(a + b*x^n)^2,x)

[Out]

int((c + d*x^n)^4/(a + b*x^n)^2, x)